本站不再支持您的浏覽器,360、sogou等浏覽器請切換到極速模式,或升級您的浏覽器到        更高版本!以獲得更好的觀看效果。關閉

師資隊伍

首頁 > 師資隊伍 > 教師 > 土壤與地下水環境教研所 > 正文

土壤與地下水環境教研所

張芳

郵箱:fangzhang@tsinghua.edu.cn

電話:010-62789655

地點:bevictor伟德官网中意環境節能樓707

教育背景

2008.8-2012.8 美國賓夕法尼亞州立大學土木與環境工程系,環境工程專業,博士

2008.8-2010.5 美國賓夕法尼亞州立大學土木與環境工程系,環境工程專業,碩士

2006.8-2008.7 bevictor伟德官网經濟管理學院,經濟學專業,第二學士

2004.8-2008.7 bevictor伟德官网,環境工程專業,學士


工作履曆

2017.7-今          bevictor伟德官网,副教授

2015.6-2017.7   bevictor伟德官网,助理教授

2015.1-2015.6   bevictor伟德官网,訪問學者

2012.8-2014.11 美國賓夕法尼亞州立大學土木與環境工程系,博士後研究員

個人主頁:http://www.fangzhangthu.com


學術兼職

國際微生物電化學技術協會(ISMET,2012至今)、美國化學協會(ACS,2010至今)、環境科學與工程教授協會(AEESP,2010至今)、國際水協(IWA,2016至今)會員

Environmental Science & Technology, Energy & Environmental Science, Angewandte Chemie, ES&T Letters, Journal of Power Sources, Bioresource Technology, Electrochemistry Communications, Bioelectrochemistry等20餘部期刊審稿人


研究領域

地下水電化學修複

劣質地下水資源化

微生物電化學技術


研究概況

1.污染場地安全修複技術國家工程實驗室開放基金,電場遷移-電阻加熱相協同的原位修複體系構建研究,2018/01-2019/12,主持

2.國家自然科學基金面上項目,基于能量耦合的低滲透介質氯代烴電化學修複的體系建立和機制研究,2017/01-2020/12,主持

3.國家重點研發計劃政府間國際科技創新合作重點專項,原位熱修複技術在污染場地土壤修複中的應用,2016/12-2019/12,子課題負責人

4.bevictor伟德官网自主科研計劃,地下水氯代烴氧化-礦化的電化學協同反應過程與體系研究,2015/10-2018/9,主持

5.環境模拟與污染控制國家重點聯合實驗室(bevictor伟德官网)2015年度自由探索課題,基于電化學的氧化-吸附協同去除地下水中砷的機制研究,2015/7-2017/6,主持

(課題組長期招收本科、碩士及博士生。有意者請将簡曆發至fangzhang@tsinghua.edu.cn。)


獎勵與榮譽

入選中國科協“青年人才托舉工程”,2015

入選bevictor伟德官网骨幹人才支持計劃,2015

Environmental Science & Technology Letters Excellence in Review Award, 2015

Journal of Power Sources Outstanding Reviewer Status, 2015

國家優秀自費留學生獎學金,2011

美國化學協會環境化學學部優秀研究生,2011

美國化學協會環境化學學部優秀口頭報告,2010

bevictor伟德官网優良本科畢業生, 2008

國家獎學金(bevictor伟德官网綜合一等獎學金),2007

彙豐銀行獎學金(bevictor伟德官网綜合一等獎學金), 2006

bevictor伟德官网體育之星,2006

嘉裡糧油獎學金(bevictor伟德官网綜合二等獎學金), 2005

bevictor伟德官网優秀本科生,2005


學術成果

期刊文章

1.Yang, J.; Li, G.; Qian, Y.; Zhang, F.*, Increased soil methane emissions and methanogenesis in oil contaminated areas. Land Degradation & Development, 2018, in press. (IF 9.787)

2.Rahimi, M.; Straub, A. P.; Zhang, F.; Zhu, X.; Elimelech, M.; Gorski, C.; Logan, B. E., Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Environ. Sci. 2018, in press. (IF 29.518)

3.Zhang, H.; Wan, X.; Li, G.; Zhang, F.*, A three-electrode electro-Fenton system supplied by self-generated oxygen with automatic pH-regulation for groundwater remediation. Electrochimica Acta 2017, 250, 42-48. (IF 4.798)

4.Si, Y.; Li, G.*; Zhang, F.*, Energy-Efficient Oxidation and Removal of Arsenite from Groundwater Using Air-Cathode Iron Electrocoagulation. Environ. Sci. Technol. Lett. 2017, 4, (2), 71-75. (IF 5.308)

5.Sun, D.; Cheng, S.; Zhang, F.; Logan, B. E., Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms. J. Power Sources 2017, 356, 566-571. (IF 6.395)

6.Rahimi, M.; Schoener, Z.; Zhu, X.; Zhang, F.; Gorski, C. A.; Logan, B. E., Removal of copper from water using a thermally regenerative electrodeposition battery. J. Hazard. Mater. 2017, 322, 551-556. (IF 6.065)

7.Jiang, J.; Li, G.; Li, Z.; Zhang, X.; Zhang, F.*, An Fe–Mn binary oxide (FMBO) modified electrode for effective electrochemical advanced oxidation at neutral pH. Electrochimica Acta 2016, 194, 104-109. (IF 4.798)

8.Zhang, F.; Li, G., China released the action plan on prevention and control of soil pollution. Frontier of Environmental Science & Engineering 2016, 10(4): 19 (IF 1.716)

9.Coulon, F.; Jones, K.; Li, H.; Hu, Q.; Gao, J.; Li, F.; Chen, M.; Zhu, Y.-G.; Liu, R.; Liu, M.; Canning, K.; Harries, N.; Bardos, P.; Nathanail, P.; Sweeney, R.; Middleton, D.; Charnley, M.; Randall, J.; Richell, M.; Howard, T.; Martin, I.; Spooner, S.; Weeks, J.; Cave, M.; Yu, F.; Zhang, F.; Jiang, Y.; Longhurst, P.; Prpich, G.; Bewley, R.; Abra, J.; Pollard, S., China's soil and groundwater management challenges: Lessons from the UK's experience and opportunities for China. Environment International 2016, 91, 196-200. (IF 7.088)

10.柯杭,張芳,李廣賀,張旭;鐵源對碳熱合成磁性碳質吸附劑的影響,環境工程學報,2016


Prior to Joining THU

11.Zhang, F.; Liu, J.; Yang, W.; Logan, B.E., A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power. Energy & Environmental Science 2015, 8, 343-3249. (IF 29.518)

12.Zhang, F.; Labarge, N.; Yang, W.; Liu, J.; Logan, B.E., Enhancing the performance of low-grade thermal energy recovery in a thermally regenerative ammonia-based battery (TRAB) using elevated temperatures. ChemSusChem 2015, 8, 1043-1048. (IF 7.226)

13.Zhang, F.; Liu, J.; Ivanov, I.; Hatzell, M.C.; Yang, W.; Ahn, Y.; Logan, B.E., Reference and counter electrode positions affect electrochemical characterization of bioanodes in microbial electrochemical systems. Biotechnology and Bioengineering 2014, 111, 1931-1939. (IF 4.481)

14.Zhang, F.; Ahn, Y.; Logan, B.E., Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations. Bioresource Technology 2014, 152, 46-52. (IF 5.651)

15.Zhang, F., Xia, X., Luo, Y., Sun, D.; Call, D., Logan, B.E., Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Bioresource Technology 2013, 133, 74-81. (IF 5.651)

16.Zhang, F.; Chen, G.; Hickner, M.A.; Logan, B.E., Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes. Journal of Power Sources 2012, 218, 100-105. (IF 6.395)

17.Zhang, F.; Pant, D.; Logan, B.E., Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors and Bioelectronics 2011, 30, 49-55. (IF 7.780)

18.Zhang, F.; Merrill, M.D.; Tokash, J.C.; Saito, T.; Cheng, S.; Hickner, M.A.; Logan, B.E., Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors. Journal of Power Sources 2011, 196, 1097-1102. (IF 6.395)

19.Zhang, F.; Saito, T.; Cheng, S.; Hickner, M.A.; Logan, B.E., Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology 2010, 44, 1490-1495. (IF 6.198)

20.Zhang, F.; Cheng, S.; Pant, D.; Bogaert, G.V.; Logan, B.E., Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications 2009, 11, 2177-2179. (IF 4.396)

21.Liu, J.; Zhang, F.; He, W.; Yang, W.; Feng, Y.; Logan, B.E., A microbial fluidized electrode electrolysis cell for enhanced hydrogen production. Journal of Power Sources 2014, 271, 530-533. (IF 6.395)

22.Luo, X.; Zhang, F.; Liu, J.; Zhang, X.; Huang, X.; Logan, B.E., Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMC) using thermolytic solutions. Environmental Science & Technology 2014, 48, 8911-8918. (IF 6.198)

23.Yang, W.; Zhang, F.; He, W.; Liu, J.; Hickner, M.A.; Logan, B.E., Poly(vinylidene fluoride-co- hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells. Journal of Power Sources 2014, 269, 379-384. (IF 6.395)

24.Liu, J.; Zhang, F.; He, W.; Zhang, X.; Feng, Y.; Logan, B.E., Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. Journal of Power Sources 2014, 261, 278–284. (IF 6.395)

25.Ahn, Y.; Zhang, F.; Logan, B.E., Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes. Journal of Power Sources 2014, 247, 655-659. (IF 6.395)

26.Yang, W.; He, W.; Zhang, F.; Hickner, M.A.; Logan, B.E., Single-step fabrication using a phase inversion method of poly(vinylidene fluoride) (PVDF) activated carbon air cathodes for microbial fuel cells. Environmental Science & Technology Letters 2014, 1, 416-420. (IF 5.308)

27.Zhang, X.; Pant, D.; Zhang, F.; Liu, J.; Logan, B.E., Long-term performance of chemically and physically modified activated carbons in microbial fuel cell air-cathodes. ChemElectroChem 2014, 1 (11), 1859-1866. (IF 4.136)

28.Ahn, Y.; Hatzell, M.C.; Zhang, F.; Logan, B.E., Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. Journal of Power Sources 2014, 249, 440-445. (IF 6.395)

29.Ren, L.; Ahn, Y.; Hou, H.; Zhang, F.; Logan, B.E., Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions. Journal of Power Sources 2014, 257, 454-460. (IF 6.395)

30.Liu, J.; Geise, G.M.; Luo, X.; Hou, H.; Zhang, F.; Feng, Y.; Hickner, M.A.; Logan, B.E., Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells. Journal of Power Sources 2014, 271, 437-443. (IF 6.395)

31.Xia, X.; Zhang, F.; Zhang, X.; Liang, P.; Huang, X.; Logan, B.E., Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells. ACS Applied Materials & Interfaces 2013, 5, 7862-7866. (IF 7.504)

32.Chen, G.; Zhang, F.; Logan, B.E.; Hickner, M.A., Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells. Electrochemistry Communications 2013, 34, 150-152. (IF 4.396)

33.Luo, Y.; Zhang, F.; Wei, B.; Liu, G.; Zhang, R.; Logan, B.E., The use of cloth fabric diffusion layers for scalable microbial fuel cells. Biochemical Engineering Journal 2013, 73, 49-52. (IF 2.892)

34.Cusick, R.D.; Hatzell, M.C.; Zhang, F.; Logan, B.E., Minimal RED cell pairs markedly improve electrode kinetics and power production in microbial reverse electrodialysis cells. Environmental Science & Technology 2013, 47, 14518-14524. (IF 6.198)

35.Xia, X.; Tokash, J.C.; Zhang, F.; Liang, P.; Huang, X.; Logan, B.E., Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environmental Science & Technology 2013, 47, 2085-2091. (IF 6.198)

36.Wei, B.; Tokash, J.C.; Zhang, F.; Kim, Y.; Logan, B.E., Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells. Electrochimica Acta 2013, 89, 45-51. (IF 4.798)

37.Luo, X.; Nam, J.-Y.; Zhang, F.; Zhang, X.; Liang, P.; Huang, X.; Logan, B.E., Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Bioresource Technology 2013, 140, 399-405. (IF 5.651)

38.Hays, S.; Zhang, F.; Logan, B.E., Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. Journal of Power Sources 2011, 196, 8293-8300. (IF 6.395)

39.Luo, Y.; Zhang, F.; Wei, B.; Liu, G.; Zhang, R.; Logan, B.E., Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. Journal of Power Sources 2011, 196, 9317-9321. (IF 6.395)

 

發明專利

 

40.張芳,蔣晶,李廣賀,張旭;納米鐵錳複合氧化物負載的氣體擴散電極及其制備與應用,201510080569.8

41.黃霞;王麗;梁鵬;魏錦程;夏雪;張芳;布魯斯?洛根,含氮過渡金屬微生物燃料電池催化劑及其制備方法。專利号:ZL201110021367.8


Baidu
sogou