本站不再支持您的浏覽器,360、sogou等浏覽器請切換到極速模式,或升級您的浏覽器到        更高版本!以獲得更好的觀看效果。關閉

師資隊伍

首頁 > 師資隊伍 > 教師 > 大氣污染與控制教研所 > 正文

大氣污染與控制教研所

蔣靖坤

郵箱:jiangjk@tsinghua.edu.cn

電話:010-62781512

地點:bevictor伟德官网中意清華環境節能樓

教育背景

2004 – 2008  聖路易斯華盛頓大學能源環境與化學工程系,博士

2002 – 2004  bevictor伟德官网環境科學與工程系,碩士

1998 – 2002  bevictor伟德官网環境科學與工程系,學士


工作履曆

2019-2023    bevictor伟德官网 副院長

2017-至今    bevictor伟德官网  長聘教授

2010-2016    bevictor伟德官网 副研究員、準聘副教授、長聘副教授

2008 -2010   明尼蘇達大學機械工程系,博士後

教學

2021-至今   理論與實踐:空氣(本科生)

2011-至今   氣溶膠力學(研究生)

2013-2020   空氣質量管理(本科生)

2020      新生導引課(本科生)

2010      納米技術與工程,客座教師

2008      表面和膠體科學,助教

2005      傳遞現象,助教


學術兼職

2021 – 至今  Editorial Board, Results in Engineering
2020 – 至今  Editorial Board, Environmental Science & Technology Letters
2019 – 至今  Editorial Board, Environmental Research
2016 – 至今  Editor, Aerosol Science and Technology
2016 – 至今  環境模拟與污染控制國家重點聯合實驗室清華分室主任
2017 – 2018  Technical Program Committee, 2018 International Aerosol Conference
2017 – 2020  Guest editor, Atmospheric Chemistry & Physics
2016 – 2019  Editorial Board, Journal of Aerosol Science


獎勵與榮譽

2020,ES&T Letters Excellence in Review Award
2020,教育部長江學者特聘教授
2019,中國化學會青年環境化學獎
2019,bevictor伟德官网青年教師教學優秀獎
2019,bevictor伟德官网先進工作者
2018,Smoluchowski Award
2017、2018、2019, bevictor伟德官网年度教學優秀獎
2016,教育部青年長江學者
2016,北京市科技進步一等獎
2016,國家環境保護專業技術青年拔尖人才
2016,bevictor伟德官网2015屆&2016屆畢業生心目中的好教師
2015,Asian Young Aerosol Scientist Award
2015,國家科技進步二等獎
2014,“萬人計劃”青年拔尖人才
2014,教育部科技進步一等獎
2014,北京市科技新星
2012,bevictor伟德官网第五屆青年教師教學大賽二等獎(理工組)
2009,A&WMA Dissertation Award
2002,bevictor伟德官网優良畢業生


研究領域

大氣污染與氣候變化、氣溶膠科學與技術、環境監測


研究概況

  1. 大氣多相全氧化态有機組分在線測量質譜儀研制,國家重大科研儀器研制項目,2024-2028

  2. 大氣霾化學,基金委基礎科學中心項目,2022-2026

  3. 固定源超低排放高精度監測與質控技術,國家重點研發計劃,2022-2025

  4. 我國東部超大城市群大氣複合污染成因外場綜合協同觀測研究,基金委重大研究計劃集成項目,2021-2023

  5. 環境介質中的病毒識别與傳播規律,基金委重大項目,2021-2025

  6. 新冠病毒傳播與環境的關系及風險防控,國務院聯防聯控機制科技攻關專項,2020-2021

  7. New particle formation and growth mechanism in atmospheric environments with high aerosol loading, Samsung Global Research Program, 2019-2025

  8. 面向交通系統顆粒物排放監測的道路微站技術研究,政府間國際科技創新合作重點專項,2019-2022

  9. 改進冷凝生長技術以提高1-3納米大氣顆粒物檢測效率,基金委面上項目, 2019-2022

  10. 多尺度高時空分辨率污染物排放及變化趨勢,國家重點研發計劃,2018-2021

  11. 大氣中Criegee中間體實時在線檢測方法研發,基金委重點項目,2018-2022

  12. 納米顆粒物粒徑分析技術,國家重點研發計劃,2017-2020

  13. 大氣細顆粒物暴露導緻慢阻肺的暴露組學與系統生物學研究,基金委重大研究計劃重點項目,2017-2020

  14. 大氣顆粒有機物在線前處理及富集技術研發,國家重點研發計劃,2016-2020

  15. 大氣污染化學,基金委優秀青年基金項目,2015-2017

  16. 長三角區域大氣重污染事件發生特征與形成途徑研究,“十二五”科技支撐項目,2014-2017

  17. 北京市民用燃煤PM2.5排放特征研究,北京市科技新星項目,2014-2017

  18. 多介質複合污染與控制化學,基金委創新群體項目,2013-2018

  19. 二次細粒子粒徑分布、化學組成和光學特性在線測量系統,基金委國家重大科研儀器設備研制專項,2013-2017

  20. 煙氣系統中細顆粒物的轉化機制與脫除增強的機理與方法,973項目,2013-2017

  21. 鋼鐵窯爐煙塵PM2.5控制技術與裝備,863項目,2013-2015

  22. 大氣二次顆粒物的化學組分特征及形成機制,基金委重大項目,2012-2016

  23. 大氣新粒子的生長機制研究, 基金委青年基金項目,2012-2014

  24. 長江三角洲地區大氣灰霾特征與控制途徑研究, 環保公益性行業科研項目,2010-2013

  25. Clusters to Nanoparticles: Implications for Atmospheric Nucleation. U.S. National Science Foundation, 2005-2010

  26. Growth Rates of Freshly Nucleated Particles. U.S. Department of Energy, 2007-2010

  27. Relationship between Phsico-chemical Characteristics and Toxicological Properties of Nanomaterials. U.S. Air Force Office of Scientific Research, 2005-2009

  28. Full Development of Interactive Aerosol Program. U.S. National Science Foundation, 2005-2008

  29. Synthesis and Application of Magnetic Nanoparticles. U.S. National Science Foundation, 2003-2007

  30. 燃燒源可吸入顆粒物源的物理化學特征及其成因研究,973計劃項目,2002-2007


部分學術成果

一、英文文章

(完整英文文章列表請點擊鍊接查看。課題組招收本科生、研究生和博士後,歡迎聯系jiangjk@tsinghua.edu.cn)

  1. Precursor apportionment of atmospheric oxygenated organic molecules using a machine learning method

    Qiao et al., Environmental Science: Atmospheres, 2023, 3 (1): 230-237

  2. Increasing contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing observed during COVID-19 lockdowns

    Yan et al., Nature Geoscience ,2023, 16 (11): 975-981

  3. Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles

    Wu et al., Nature Communications, 2023, 14(1): 6491

  4. Unified theoretical framework for black carbon mixing state allows greater accuracy of climate effect estimation

    Wang et al., Nature Communications, 2023, 14(1): 2703

  5. Online detection of airborne nanoparticle composition with mass spectrometry: Recent advances, challenges, and opportunities

    Li et al., TrAC Trends in Analytical Chemistry, 2023, 166: 117195

  6. Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice

    Liu et al., Cell Reports Medicine, 2023, 4 (2): 100918

  7. Single-atom catalysts: promotors of highly sensitive and selective sensors

    Li et al., Chemical Society Reviews, 2023, 52 (15): 5088-5134

  8. China’s public health initiatives for climate change adaptation

    Ji et al., The Lancet Regional Health - Western Pacific, 2023, 40: 100965

  9. Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities

    Nie et al., Nature Geoscience, 2022, 15: 255-261

  10. Toxic potency-adjusted control of air pollution for solid fuel combustion

    Wu et al., Nature Energy, 2022, 7: 194-202

  11. The missing base molecules in atmospheric acid–base nucleation

    Cai et al., National Science Review, 2022, 9 (10): nwac137

  12. Application of smog chambers in atmospheric process studies

    Chu et al., National Science Review, 2022, 9: nwab103

  13. Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols

    Zhang et al., Communications Earth & Environment, 2022, 3 (1): 128

  14. Cr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity

    Zhang et al., Advanced Materials, 2022, 34(2): 2105276

  15. Observation and Source Apportionment of Atmospheric Alkaline Gases in Urban Beijing

    Zhu et al., Environmental Science & Technology, 2022, 56(24): 17545-17555

  16. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases

    Zhang et al., Engineering, 2022, 10: 155-166

  17. Measuring size distributions of atmospheric aerosols using natural air ions

    Li et al., Aerosol Science and Technology, 2022, 56: 655-664

  18. Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions

    Yang et al., Environ. Sci. & Technol., 2022, 56: 5440-5447

  19. Evaluation of a cost-effective roadside sensor platform for identifying high emitters

    Shen et al., Science of The Total Environment, 2022, 816: 151609

  20. Sulfuric acid-amine nucleation in urban Beijing

    Cai et al., Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468

  21. Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing

    Yin et al., Environmental Science & Technology, 2021, 55: 10994-11005

  22. Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment

    Qiao et al., Environmental Science & Technology, 2021, 55: 13646-13656

  23. An indicator for sulfuric acid–amine nucleation in atmospheric environments

    Cai et al., Aerosol Science and Technology, 2021, 55: 1059-1069

  24. Composition of Ultrafine Particles in Urban Beijing: Measurement Using a Thermal Desorption Chemical Ionization Mass Spectrometer

    Li et al., Environmental science & technology, 2021, 55(5): 2859-2868

  25. Improving data reliability: A quality control practice for low-cost PM2.5 sensor network

    Qiao et al., Science of The Total Environment, 2021, 779: 146381

  26. Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing

    Deng et al., Environmental Science & Technology, 2020, 54: 8547-8557

  27. Quantifying the Deposition of Airborne Particulate Matter Pollution on Skin Using Elemental Markers

    Morgan et al., Environmental Science & Technology, 2020, 54(24): 15958-15967

  28. Air pollutant emissions from coal-fired power plants in China over the past two decades

    Wang et al., Science of The Total Environment, 2020, 741: 140326

  29. Transmission via aerosols: Plausible differences among emerging coronaviruses

    Jiang et al., Aerosol Science and Technology, 2020, 54: 865-868

  30. Comprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosols

    An et al., Journal of Chromatography A, 2020, 1625: 461336

  31. Evaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in China

    Wang et al., Environmental Science & Technology, 2020, 54: 1363-1371

  32. Significant ultrafine particle emissions from residential solid fuel combustion

    Wang et al., Science of The Total Environment, 2020, 715, 136992

  33. Models for estimating nanoparticle transmission efficiency through an adverse axial electric field

    Cai et al., Aerosol Science and Technology, 2020, 54: 332-341

  34. Transmission of charged nanoparticles through the DMA adverse axial electric field and its improvement

    Cai et al., Aerosol Science and Technology, 2020, 54: 21-32

  35. Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide

    Li et al., Small, 2020, 16: 1902860

  36. Theoretical and experimental analysis of the core sampling method: Reducing diffusional losses in aerosol sampling line

    Fu, et al., Aerosol Science and Technology, 2019, 53: 793-801

  37. A soft X-ray unipolar charger for ultrafine particles

    Chen et al., Journal of Aerosol Science, 2019, 133: 66-71

  38. Improving thermal desorption aerosol gas chromatography using a dual-trap design

    Ren et al., Journal of Chromatography A, 2019, 1599: 247-252

  39. Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols

    Ren et al., Journal of Chromatography A, 2019, 1589: 141-148

  40. Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation

    Li, et al., Atmospheric Chemistry and Physics, 2019, 19: 1555-1570  

  41. Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China

    Wang et al., Science of the Total Environment, 2018, 639: 695-704

  42. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers

    Chen et al., Aerosol Science and Technology, 2018, 52: 809-813

  43. Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications

    Chen et al., Aerosol Science and Technology, 2018, 52: 1145-1155

  44. Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier

    Cai et al., Atmospheric Measurement Techniques, 2018, 11: 4477-4491

  45. Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame

    Tang et al., Proceedings of the Combustion Institute, 2017, 36: 993-1000

  46. Aerosol surface area concentration: a governing factor in new particle formation in Beijing

    Cai et al., Atmos. Chem. Phys., 2017, 17: 12327-12340

  47. A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging

    Cai et al., Atmos. Chem. Phys., 2017, 17: 12659-12675

  48. A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing

    Cai et al., Journal of Aerosol Science, 2017, 106: 111-119

  49. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process

    Zhou et al., Environmental Science & Technology, 2016, 50: 7861-7869

  50. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μm

    Liu et al., Frontiers of Environmental Science & Engineering, 2016, 10: 63-72

  51. Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies

    Li et al., Environmental Science & Technology Letters, 2016, 3: 98-103

  52. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities

    Jiang et al., Nature Protocols, 2015, 10: 768

  53. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement

    Wang et al., Aerosol Science and Technology, 2015, 49: 1063-1077

  54. Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate

    Jiang et al., Aerosol Science and Technology, 2014, 48: 1207-1216

  55. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

    Cao et al., Environmental Science & Technology, 2014, 48: 1499-1507

  56. Characteristics and health impacts of particulate matter pollution in China (2001–2011)

    Cheng et al., Atmospheric Environment, 2013, 65: 186-194

  57. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Wiedensohler et al., Atmospheric Measurement Techniques, 2012, 5: 657-685

  58. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    Chen et al., PNAS, 2012, 109: 18713-18718

  59. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties

    Suttiponparnit et al., Nanoscale Research Letters, 2011, 6:

  60. First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events

    Jiang et al., Aerosol Science and Technology, 2011, 45: ii-v

  61. Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm

    Jiang et al., Aerosol Science and Technology, 2011, 45: 510 - 521

  62. Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification

    Jiang et al., Aerosol Science and Technology, 2011, 45: 480 - 492

  63. Ambient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and Ammonia

    Hanson et al., Environmental Science & Technology, 2011, 45: 8881-8888

  64. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

    Jiang et al., Journal of Nanoparticle Research, 2009, 11: 77-89

  65. Does nanoparticle activity depend upon size and crystal phase?

    Jiang et al., Nanotoxicology, 2008, 2: 33 - 42

  66. Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms

    Jiang et al., Journal of Electrostatics, 2007, 65: 209-220

  67. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    Jiang et al., Nanotechnology, 2007, 18: 285603

  68. Anthropogenic mercury emissions in China

    Streets et al., Atmospheric Environment, 2005, 39: 7789-7806

中文文章

  1. 李曉曉, 蔣靖坤, 王東濱, 葛茂發, 郝吉明. 大氣超細顆粒物來源及其化學組分研究進展. 環境化學, 2021, 40(10): 2947-2959.

  2. 李雪, 蔣靖坤*, 王東濱, 鄧建國, 賀克斌, 郝吉明. 冠狀病毒氣溶膠傳播及環境影響因素. 環境科學, 2021, 42(7): 3091-3098.

  3. 王東濱, 薛墨, 陳小彤, 蔣靖坤*. 一種新型軟X射線氣溶膠荷電器的開發與評測. 大氣與環境光學學報, 2020, 15(06): 429-437.

  4. 張瑩,鄧建國,王剛,李妍菁,續鵬, 蔣靖坤*,典型鋼鐵焦化廠可凝結顆粒物排放特征,環境工程,2020, 38(09): 154-158.

  5. 鄧建國, 張瑩, 王樂冰, 李妍菁, 段雷, 郝吉明, 蔣靖坤*,測量固定源可凝結顆粒物的稀釋間接法及系統,環境科學學報,2020,40(11):4162-4168.

  6. 楚碧武, 馬慶鑫, 段鳳魁, 馬金珠, 蔣靖坤, 賀克斌, 賀泓. 大氣“霾化學”:概念提出和研究展望. 化學進展, 2020, 32: 1-4.

  7. 蔣靖坤*,鄧建國,王剛,張瑩,李妍菁,段雷,郝吉明.固定污染源可凝結顆粒物測量方法.環境科學, 2019, 40(12): 5234-5239.

  8. 王東濱, 郝吉明, 蔣靖坤*. 民用固體燃料燃燒超細顆粒物排放及其潛在健康影響. 科學通報, 2019, 64: 3429.

  9. 鄧建國,馬子轸,李振,段雷,蔣靖坤*.不同濕法脫硫工藝對燃煤電廠PM2.5排放的影響.環境科學,2019,40(8):3457-3462.

  10. 姚群, 柳靜獻, 蔣靖坤. 鋼鐵窯爐煙塵細顆粒物超低排放技術與裝備. 中國環保産業, 2018, 6: 39 – 43.

  11. 李慶, 段雷, 蔣靖坤*, 王書肖, 郝吉明. 我國民用燃煤一次顆粒物的減排潛力研究. 中國電機工程學報, 2016, 16: 4408-4414

  12. 樊筱筱, 蔣靖坤*, 吳烨, 張強, 李振華, 段雷. 不同稀釋條件與測量技術下缸内直噴汽車排放顆粒物數濃度和粒徑分布特征. 中國電機工程學報,2016, 16

  13. 樊筱筱, 蔣靖坤*, 張強, 李振華, 何立強, 吳烨, 胡京南, 郝吉明. 輕型汽油車排放顆粒物數濃度和粒徑分布特征. 環境科學,2016, 37(10): 3743-3749

  14. 蔣靖坤*, 鄧建國, 李振, 馬子轸, 周偉, 張強, 段雷, 郝吉明. 雙級虛拟撞擊采樣器應用于固定污染源PM10和PM2.5排放測量. 環境科學,2016, 37(6): 2003-2007

  15. 張琦, 李慶, 蔣靖坤*, 鄧建國, 段雷, 郝吉明. 一套民用固體燃料燃燒大氣污染物排放測試系統的搭建和評測. 環境科學學報,2016,36:3393-3399

  16. 陳小彤, 蔣靖坤*, 鄧建國, 李慶, 段雷,郝吉明. 一種氣溶膠測量儀器标定系統的設計及性能評估. 環境科學,2016, 37(3): 789-794

  17. 馬子轸, 李振, 蔣靖坤, 葉芝祥, 鄧建國, 段雷. 燃煤電廠産生和排放的PM2.5中水溶性離子特征. 環境科學, 2015, 36(7):2361-2366

  18. 王步英, 郎繼東, 張麗娜, 方劍火, 曹晨, 郝吉明, 朱聽, 田埂*, 蔣靖坤*. 基于16S rRNA基因測序法分析的北京霾污染過程PM2.5和PM10中細菌群落特征. 環境科學, 2015, 36(8): 2727-2734

  19. 段雷, 馬子轸, 李振, 蔣靖坤, 葉芝祥. 燃煤電廠排放細顆粒物的水溶性無機離子特征綜述. 環境科學, 2015, 36(3): 1117-1122

  20. 蔣靖坤*, 鄧建國, 段雷, 張強, 李振, 陳小彤, 李興華, 郝吉明. 基于虛拟撞擊原理的固定源PM10/PM2.5采樣器的研制. 環境科學, 2014, 35(10): 3639-3643.

  21. 蔣靖坤*, 鄧建國, 李振, 李興華, 段雷, 郝吉明. 固定污染源排氣中PM2.5采樣方法綜述. 環境科學, 2014,35(5): 2018-2024.

  22. 麥華俊, 蔣靖坤*, 何正旭, 郝吉明. 一種納米氣溶膠發生系統的設計及性能測試. 環境科學, 2013,34: 2950-2954

  23. 蔣靖坤, 郝吉明, 吳烨, David G. Streets, 段雷, 田賀忠. 中國燃煤汞排放清單的初步建立. 環境科學, 2005, 26: 34-39.


Baidu
sogou