2004 – 2008 聖路易斯華盛頓大學能源環境與化學工程系,博士
2002 – 2004 bevictor伟德官网環境科學與工程系,碩士
1998 – 2002 bevictor伟德官网環境科學與工程系,學士
本站不再支持您的浏覽器,360、sogou等浏覽器請切換到極速模式,或升級您的浏覽器到 更高版本!以獲得更好的觀看效果。關閉
師資隊伍
首頁 > 師資隊伍 > 教師 > 大氣污染與控制教研所 > 正文
大氣污染與控制教研所
蔣靖坤
郵箱:jiangjk@tsinghua.edu.cn
電話:010-62781512
地點:bevictor伟德官网中意清華環境節能樓
教育背景
2004 – 2008 聖路易斯華盛頓大學能源環境與化學工程系,博士
2002 – 2004 bevictor伟德官网環境科學與工程系,碩士
1998 – 2002 bevictor伟德官网環境科學與工程系,學士
工作履曆
2019-2023 bevictor伟德官网 副院長
2017-至今 bevictor伟德官网 長聘教授
2010-2016 bevictor伟德官网 副研究員、準聘副教授、長聘副教授
2008 -2010 明尼蘇達大學機械工程系,博士後
教學
2021-至今 理論與實踐:空氣(本科生)
2011-至今 氣溶膠力學(研究生)
2013-2020 空氣質量管理(本科生)
2020 新生導引課(本科生)
2010 納米技術與工程,客座教師
2008 表面和膠體科學,助教
2005 傳遞現象,助教
學術兼職
2021 – 至今 Editorial Board, Results in Engineering
2020 – 至今 Editorial Board, Environmental Science & Technology Letters
2019 – 至今 Editorial Board, Environmental Research
2016 – 至今 Editor, Aerosol Science and Technology
2016 – 至今 環境模拟與污染控制國家重點聯合實驗室清華分室主任
2017 – 2018 Technical Program Committee, 2018 International Aerosol Conference
2017 – 2020 Guest editor, Atmospheric Chemistry & Physics
2016 – 2019 Editorial Board, Journal of Aerosol Science
獎勵與榮譽
2020,ES&T Letters Excellence in Review Award
2020,教育部長江學者特聘教授
2019,中國化學會青年環境化學獎
2019,bevictor伟德官网青年教師教學優秀獎
2019,bevictor伟德官网先進工作者
2018,Smoluchowski Award
2017、2018、2019, bevictor伟德官网年度教學優秀獎
2016,教育部青年長江學者
2016,北京市科技進步一等獎
2016,國家環境保護專業技術青年拔尖人才
2016,bevictor伟德官网2015屆&2016屆畢業生心目中的好教師
2015,Asian Young Aerosol Scientist Award
2015,國家科技進步二等獎
2014,“萬人計劃”青年拔尖人才
2014,教育部科技進步一等獎
2014,北京市科技新星
2012,bevictor伟德官网第五屆青年教師教學大賽二等獎(理工組)
2009,A&WMA Dissertation Award
2002,bevictor伟德官网優良畢業生
研究領域
大氣污染與氣候變化、氣溶膠科學與技術、環境監測
研究概況
大氣多相全氧化态有機組分在線測量質譜儀研制,國家重大科研儀器研制項目,2024-2028
大氣霾化學,基金委基礎科學中心項目,2022-2026
固定源超低排放高精度監測與質控技術,國家重點研發計劃,2022-2025
我國東部超大城市群大氣複合污染成因外場綜合協同觀測研究,基金委重大研究計劃集成項目,2021-2023
環境介質中的病毒識别與傳播規律,基金委重大項目,2021-2025
新冠病毒傳播與環境的關系及風險防控,國務院聯防聯控機制科技攻關專項,2020-2021
New particle formation and growth mechanism in atmospheric environments with high aerosol loading, Samsung Global Research Program, 2019-2025
面向交通系統顆粒物排放監測的道路微站技術研究,政府間國際科技創新合作重點專項,2019-2022
改進冷凝生長技術以提高1-3納米大氣顆粒物檢測效率,基金委面上項目, 2019-2022
多尺度高時空分辨率污染物排放及變化趨勢,國家重點研發計劃,2018-2021
大氣中Criegee中間體實時在線檢測方法研發,基金委重點項目,2018-2022
納米顆粒物粒徑分析技術,國家重點研發計劃,2017-2020
大氣細顆粒物暴露導緻慢阻肺的暴露組學與系統生物學研究,基金委重大研究計劃重點項目,2017-2020
大氣顆粒有機物在線前處理及富集技術研發,國家重點研發計劃,2016-2020
大氣污染化學,基金委優秀青年基金項目,2015-2017
長三角區域大氣重污染事件發生特征與形成途徑研究,“十二五”科技支撐項目,2014-2017
北京市民用燃煤PM2.5排放特征研究,北京市科技新星項目,2014-2017
多介質複合污染與控制化學,基金委創新群體項目,2013-2018
二次細粒子粒徑分布、化學組成和光學特性在線測量系統,基金委國家重大科研儀器設備研制專項,2013-2017
煙氣系統中細顆粒物的轉化機制與脫除增強的機理與方法,973項目,2013-2017
鋼鐵窯爐煙塵PM2.5控制技術與裝備,863項目,2013-2015
大氣二次顆粒物的化學組分特征及形成機制,基金委重大項目,2012-2016
大氣新粒子的生長機制研究, 基金委青年基金項目,2012-2014
長江三角洲地區大氣灰霾特征與控制途徑研究, 環保公益性行業科研項目,2010-2013
Clusters to Nanoparticles: Implications for Atmospheric Nucleation. U.S. National Science Foundation, 2005-2010
Growth Rates of Freshly Nucleated Particles. U.S. Department of Energy, 2007-2010
Relationship between Phsico-chemical Characteristics and Toxicological Properties of Nanomaterials. U.S. Air Force Office of Scientific Research, 2005-2009
Full Development of Interactive Aerosol Program. U.S. National Science Foundation, 2005-2008
Synthesis and Application of Magnetic Nanoparticles. U.S. National Science Foundation, 2003-2007
燃燒源可吸入顆粒物源的物理化學特征及其成因研究,973計劃項目,2002-2007
部分學術成果
一、英文文章
(完整英文文章列表請點擊鍊接查看。課題組招收本科生、研究生和博士後,歡迎聯系jiangjk@tsinghua.edu.cn)
Precursor apportionment of atmospheric oxygenated organic molecules using a machine learning method
Qiao et al., Environmental Science: Atmospheres, 2023, 3 (1): 230-237
Increasing contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing observed during COVID-19 lockdowns
Yan et al., Nature Geoscience ,2023, 16 (11): 975-981
Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles
Wu et al., Nature Communications, 2023, 14(1): 6491
Unified theoretical framework for black carbon mixing state allows greater accuracy of climate effect estimation
Wang et al., Nature Communications, 2023, 14(1): 2703
Online detection of airborne nanoparticle composition with mass spectrometry: Recent advances, challenges, and opportunities
Li et al., TrAC Trends in Analytical Chemistry, 2023, 166: 117195
Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice
Liu et al., Cell Reports Medicine, 2023, 4 (2): 100918
Single-atom catalysts: promotors of highly sensitive and selective sensors
Li et al., Chemical Society Reviews, 2023, 52 (15): 5088-5134
China’s public health initiatives for climate change adaptation
Ji et al., The Lancet Regional Health - Western Pacific, 2023, 40: 100965
Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities
Nie et al., Nature Geoscience, 2022, 15: 255-261
Toxic potency-adjusted control of air pollution for solid fuel combustion
Wu et al., Nature Energy, 2022, 7: 194-202
The missing base molecules in atmospheric acid–base nucleation
Cai et al., National Science Review, 2022, 9 (10): nwac137
Application of smog chambers in atmospheric process studies
Chu et al., National Science Review, 2022, 9: nwab103
Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols
Zhang et al., Communications Earth & Environment, 2022, 3 (1): 128
Cr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity
Zhang et al., Advanced Materials, 2022, 34(2): 2105276
Observation and Source Apportionment of Atmospheric Alkaline Gases in Urban Beijing
Zhu et al., Environmental Science & Technology, 2022, 56(24): 17545-17555
Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases
Zhang et al., Engineering, 2022, 10: 155-166
Measuring size distributions of atmospheric aerosols using natural air ions
Li et al., Aerosol Science and Technology, 2022, 56: 655-664
Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions
Yang et al., Environ. Sci. & Technol., 2022, 56: 5440-5447
Evaluation of a cost-effective roadside sensor platform for identifying high emitters
Shen et al., Science of The Total Environment, 2022, 816: 151609
Sulfuric acid-amine nucleation in urban Beijing
Cai et al., Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468
Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing
Yin et al., Environmental Science & Technology, 2021, 55: 10994-11005
Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment
Qiao et al., Environmental Science & Technology, 2021, 55: 13646-13656
An indicator for sulfuric acid–amine nucleation in atmospheric environments
Cai et al., Aerosol Science and Technology, 2021, 55: 1059-1069
Composition of Ultrafine Particles in Urban Beijing: Measurement Using a Thermal Desorption Chemical Ionization Mass Spectrometer
Li et al., Environmental science & technology, 2021, 55(5): 2859-2868
Improving data reliability: A quality control practice for low-cost PM2.5 sensor network
Qiao et al., Science of The Total Environment, 2021, 779: 146381
Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing
Deng et al., Environmental Science & Technology, 2020, 54: 8547-8557
Quantifying the Deposition of Airborne Particulate Matter Pollution on Skin Using Elemental Markers
Morgan et al., Environmental Science & Technology, 2020, 54(24): 15958-15967
Air pollutant emissions from coal-fired power plants in China over the past two decades
Wang et al., Science of The Total Environment, 2020, 741: 140326
Transmission via aerosols: Plausible differences among emerging coronaviruses
Jiang et al., Aerosol Science and Technology, 2020, 54: 865-868
Comprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosols
An et al., Journal of Chromatography A, 2020, 1625: 461336
Evaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in China
Wang et al., Environmental Science & Technology, 2020, 54: 1363-1371
Significant ultrafine particle emissions from residential solid fuel combustion
Wang et al., Science of The Total Environment, 2020, 715, 136992
Models for estimating nanoparticle transmission efficiency through an adverse axial electric field
Cai et al., Aerosol Science and Technology, 2020, 54: 332-341
Transmission of charged nanoparticles through the DMA adverse axial electric field and its improvement
Cai et al., Aerosol Science and Technology, 2020, 54: 21-32
Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide
Li et al., Small, 2020, 16: 1902860
Theoretical and experimental analysis of the core sampling method: Reducing diffusional losses in aerosol sampling line
Fu, et al., Aerosol Science and Technology, 2019, 53: 793-801
A soft X-ray unipolar charger for ultrafine particles
Chen et al., Journal of Aerosol Science, 2019, 133: 66-71
Improving thermal desorption aerosol gas chromatography using a dual-trap design
Ren et al., Journal of Chromatography A, 2019, 1599: 247-252
Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols
Ren et al., Journal of Chromatography A, 2019, 1589: 141-148
Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation
Li, et al., Atmospheric Chemistry and Physics, 2019, 19: 1555-1570
Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China
Wang et al., Science of the Total Environment, 2018, 639: 695-704
Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers
Chen et al., Aerosol Science and Technology, 2018, 52: 809-813
Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications
Chen et al., Aerosol Science and Technology, 2018, 52: 1145-1155
Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier
Cai et al., Atmospheric Measurement Techniques, 2018, 11: 4477-4491
Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame
Tang et al., Proceedings of the Combustion Institute, 2017, 36: 993-1000
Aerosol surface area concentration: a governing factor in new particle formation in Beijing
Cai et al., Atmos. Chem. Phys., 2017, 17: 12327-12340
A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging
Cai et al., Atmos. Chem. Phys., 2017, 17: 12659-12675
A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing
Cai et al., Journal of Aerosol Science, 2017, 106: 111-119
Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process
Zhou et al., Environmental Science & Technology, 2016, 50: 7861-7869
A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μm
Liu et al., Frontiers of Environmental Science & Engineering, 2016, 10: 63-72
Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies
Li et al., Environmental Science & Technology Letters, 2016, 3: 98-103
Optimized DNA extraction and metagenomic sequencing of airborne microbial communities
Jiang et al., Nature Protocols, 2015, 10: 768
Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement
Wang et al., Aerosol Science and Technology, 2015, 49: 1063-1077
Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate
Jiang et al., Aerosol Science and Technology, 2014, 48: 1207-1216
Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event
Cao et al., Environmental Science & Technology, 2014, 48: 1499-1507
Characteristics and health impacts of particulate matter pollution in China (2001–2011)
Cheng et al., Atmospheric Environment, 2013, 65: 186-194
Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions
Wiedensohler et al., Atmospheric Measurement Techniques, 2012, 5: 657-685
Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer
Chen et al., PNAS, 2012, 109: 18713-18718
Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties
Suttiponparnit et al., Nanoscale Research Letters, 2011, 6:
First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events
Jiang et al., Aerosol Science and Technology, 2011, 45: ii-v
Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm
Jiang et al., Aerosol Science and Technology, 2011, 45: 510 - 521
Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification
Jiang et al., Aerosol Science and Technology, 2011, 45: 480 - 492
Ambient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and Ammonia
Hanson et al., Environmental Science & Technology, 2011, 45: 8881-8888
Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies
Jiang et al., Journal of Nanoparticle Research, 2009, 11: 77-89
Does nanoparticle activity depend upon size and crystal phase?
Jiang et al., Nanotoxicology, 2008, 2: 33 - 42
Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms
Jiang et al., Journal of Electrostatics, 2007, 65: 209-220
Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology
Jiang et al., Nanotechnology, 2007, 18: 285603
Anthropogenic mercury emissions in China
Streets et al., Atmospheric Environment, 2005, 39: 7789-7806
中文文章
李曉曉, 蔣靖坤, 王東濱, 葛茂發, 郝吉明. 大氣超細顆粒物來源及其化學組分研究進展. 環境化學, 2021, 40(10): 2947-2959.
李雪, 蔣靖坤*, 王東濱, 鄧建國, 賀克斌, 郝吉明. 冠狀病毒氣溶膠傳播及環境影響因素. 環境科學, 2021, 42(7): 3091-3098.
王東濱, 薛墨, 陳小彤, 蔣靖坤*. 一種新型軟X射線氣溶膠荷電器的開發與評測. 大氣與環境光學學報, 2020, 15(06): 429-437.
張瑩,鄧建國,王剛,李妍菁,續鵬, 蔣靖坤*,典型鋼鐵焦化廠可凝結顆粒物排放特征,環境工程,2020, 38(09): 154-158.
鄧建國, 張瑩, 王樂冰, 李妍菁, 段雷, 郝吉明, 蔣靖坤*,測量固定源可凝結顆粒物的稀釋間接法及系統,環境科學學報,2020,40(11):4162-4168.
楚碧武, 馬慶鑫, 段鳳魁, 馬金珠, 蔣靖坤, 賀克斌, 賀泓. 大氣“霾化學”:概念提出和研究展望. 化學進展, 2020, 32: 1-4.
蔣靖坤*,鄧建國,王剛,張瑩,李妍菁,段雷,郝吉明.固定污染源可凝結顆粒物測量方法.環境科學, 2019, 40(12): 5234-5239.
王東濱, 郝吉明, 蔣靖坤*. 民用固體燃料燃燒超細顆粒物排放及其潛在健康影響. 科學通報, 2019, 64: 3429.
鄧建國,馬子轸,李振,段雷,蔣靖坤*.不同濕法脫硫工藝對燃煤電廠PM2.5排放的影響.環境科學,2019,40(8):3457-3462.
姚群, 柳靜獻, 蔣靖坤. 鋼鐵窯爐煙塵細顆粒物超低排放技術與裝備. 中國環保産業, 2018, 6: 39 – 43.
李慶, 段雷, 蔣靖坤*, 王書肖, 郝吉明. 我國民用燃煤一次顆粒物的減排潛力研究. 中國電機工程學報, 2016, 16: 4408-4414
樊筱筱, 蔣靖坤*, 吳烨, 張強, 李振華, 段雷. 不同稀釋條件與測量技術下缸内直噴汽車排放顆粒物數濃度和粒徑分布特征. 中國電機工程學報,2016, 16
樊筱筱, 蔣靖坤*, 張強, 李振華, 何立強, 吳烨, 胡京南, 郝吉明. 輕型汽油車排放顆粒物數濃度和粒徑分布特征. 環境科學,2016, 37(10): 3743-3749
蔣靖坤*, 鄧建國, 李振, 馬子轸, 周偉, 張強, 段雷, 郝吉明. 雙級虛拟撞擊采樣器應用于固定污染源PM10和PM2.5排放測量. 環境科學,2016, 37(6): 2003-2007
張琦, 李慶, 蔣靖坤*, 鄧建國, 段雷, 郝吉明. 一套民用固體燃料燃燒大氣污染物排放測試系統的搭建和評測. 環境科學學報,2016,36:3393-3399
陳小彤, 蔣靖坤*, 鄧建國, 李慶, 段雷,郝吉明. 一種氣溶膠測量儀器标定系統的設計及性能評估. 環境科學,2016, 37(3): 789-794
馬子轸, 李振, 蔣靖坤, 葉芝祥, 鄧建國, 段雷. 燃煤電廠産生和排放的PM2.5中水溶性離子特征. 環境科學, 2015, 36(7):2361-2366
王步英, 郎繼東, 張麗娜, 方劍火, 曹晨, 郝吉明, 朱聽, 田埂*, 蔣靖坤*. 基于16S rRNA基因測序法分析的北京霾污染過程PM2.5和PM10中細菌群落特征. 環境科學, 2015, 36(8): 2727-2734
段雷, 馬子轸, 李振, 蔣靖坤, 葉芝祥. 燃煤電廠排放細顆粒物的水溶性無機離子特征綜述. 環境科學, 2015, 36(3): 1117-1122
蔣靖坤*, 鄧建國, 段雷, 張強, 李振, 陳小彤, 李興華, 郝吉明. 基于虛拟撞擊原理的固定源PM10/PM2.5采樣器的研制. 環境科學, 2014, 35(10): 3639-3643.
蔣靖坤*, 鄧建國, 李振, 李興華, 段雷, 郝吉明. 固定污染源排氣中PM2.5采樣方法綜述. 環境科學, 2014,35(5): 2018-2024.
麥華俊, 蔣靖坤*, 何正旭, 郝吉明. 一種納米氣溶膠發生系統的設計及性能測試. 環境科學, 2013,34: 2950-2954
蔣靖坤, 郝吉明, 吳烨, David G. Streets, 段雷, 田賀忠. 中國燃煤汞排放清單的初步建立. 環境科學, 2005, 26: 34-39.
地址 : 北京市海澱區bevictor伟德官网
郵編 : 100084
郵箱 : hjx@tsinghua.edu.cn
電話 : +86-10-62784521
傳真 : +86-10-62785687
bevictor伟德官网公衆号
本科生公衆号
研究生公衆号
Copyright © 伟德国际(betvlctor·1949)始于英国-官方网站 版權所有